AKAP150 participates in calcineurin/NFAT activation during the down-regulation of voltage-gated K(+) currents in ventricular myocytes following myocardial infarction.

نویسندگان

  • Madeline Nieves-Cintrón
  • Dinesh Hirenallur-Shanthappa
  • Patrick J Nygren
  • Simon A Hinke
  • Mark L Dell'Acqua
  • Lorene K Langeberg
  • Manuel Navedo
  • Luis F Santana
  • John D Scott
چکیده

The Ca(2+)-responsive phosphatase calcineurin/protein phosphatase 2B dephosphorylates the transcription factor NFATc3. In the myocardium activation of NFATc3 down-regulates the expression of voltage-gated K(+) (Kv) channels after myocardial infarction (MI). This prolongs action potential duration and increases the probability of arrhythmias. Although recent studies infer that calcineurin is activated by local and transient Ca(2+) signals the molecular mechanism that underlies the process is unclear in ventricular myocytes. Here we test the hypothesis that sequestering of calcineurin to the sarcolemma of ventricular myocytes by the anchoring protein AKAP150 is required for acute activation of NFATc3 and the concomitant down-regulation of Kv channels following MI. Biochemical and cell based measurements resolve that approximately 0.2% of the total calcineurin activity in cardiomyocytes is associated with AKAP150. Electrophysiological analyses establish that formation of this AKAP150-calcineurin signaling dyad is essential for the activation of the phosphatase and the subsequent down-regulation of Kv channel currents following MI. Thus AKAP150-mediated targeting of calcineurin to sarcolemmal micro-domains in ventricular myocytes contributes to the local and acute gene remodeling events that lead to the down-regulation of Kv currents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NFATc3-induced reductions in voltage-gated K+ currents after myocardial infarction.

Reductions in voltage-activated K+ (Kv) currents may underlie arrhythmias after myocardial infarction (MI). We investigated the role of beta-adrenergic signaling and the calcineurin/NFAT pathway in mediating the reductions in Kv currents observed after MI in mouse ventricular myocytes. Kv currents were produced by the summation of 3 distinct currents: I(to), I(Kslow1), and I(Kslow2). At 48 hour...

متن کامل

Selective down-regulation of KV2.1 function contributes to enhanced arterial tone during diabetes.

Enhanced arterial tone is a leading cause of vascular complications during diabetes. Voltage-gated K(+) (KV) channels are key regulators of vascular smooth muscle cells (VSMCs) contractility and arterial tone. Whether impaired KV channel function contributes to enhance arterial tone during diabetes is unclear. Here, we demonstrate a reduction in KV-mediated currents (IKv) in VSMCs from a high f...

متن کامل

Decreased KCNE2 Expression Participates in the Development of Cardiac Hypertrophy by Regulation of Calcineurin-NFAT (Nuclear Factor of Activated T Cells) and Mitogen-Activated Protein Kinase Pathways.

BACKGROUND KCNE2 is a promiscuous auxiliary subunit of voltage-gated cation channels. A recent work demonstrated that KCNE2 regulates L-type Ca2+ channels. Given the important roles of altered Ca2+ signaling in structural and functional remodeling in diseased hearts, this study investigated whether KCNE2 participates in the development of pathological hypertrophy. METHODS AND RESULTS We found...

متن کامل

Syndecan-4 Is Essential for Development of Concentric Myocardial Hypertrophy via Stretch-Induced Activation of the Calcineurin-NFAT Pathway

Sustained pressure overload leads to compensatory myocardial hypertrophy and subsequent heart failure, a leading cause of morbidity and mortality. Further unraveling of the cellular processes involved is essential for development of new treatment strategies. We have investigated the hypothesis that the transmembrane Z-disc proteoglycan syndecan-4, a co-receptor for integrins, connecting extrace...

متن کامل

Channel Is Required for Pressure Overload–Induced Cardiac Hypertrophy in Mice

Voltage-gated T-type Ca channels (T-channels) are normally expressed during embryonic development in ventricular myocytes but are undetectable in adult ventricular myocytes. Interestingly, T-channels are reexpressed in hypertrophied or failing hearts. It is unclear whether T-channels play a role in the pathogenesis of cardiomyopathy and what the mechanism might be. Here we show that the 1H volt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cellular signalling

دوره 28 7  شماره 

صفحات  -

تاریخ انتشار 2016